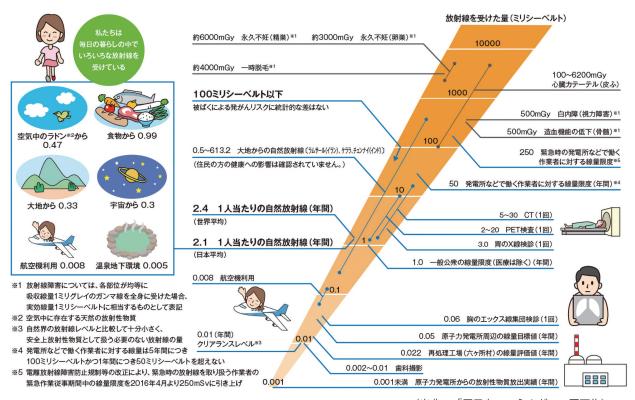
参

3-4 日常生活と放射線


私たちは、太古以来地球上のあらゆる所で、ある程度の放射線を受けていますが、 この放射線を自然放射線と呼んでいます。

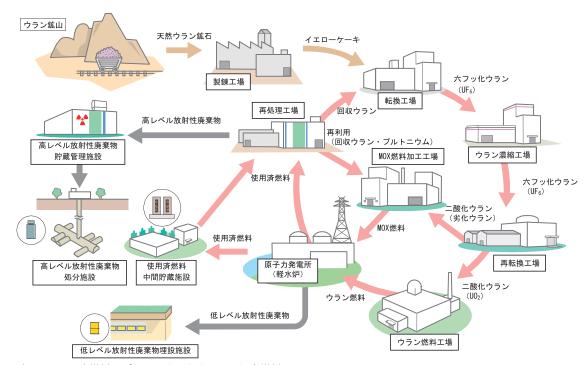
私たちが自然界から受ける自然放射線には、遠い宇宙から降りそそぐもの、大地の岩石などから出てくるもの、そして食べ物を通して体の中から受けるものがあります。こうした放射線を私たちは一年間に平均して一人当たり約2.4ミリシーベルト(世界平均)受けていますが、地域によってその量には差があります(日本平均は約2.1ミリシーベルト)。

一方、医療用などで人工的につくるX線や原子力発電所の運転に伴って生まれるもの等を"人工放射線"と呼んでいます。

胸のレントゲン撮影では1回に0.06ミリシーベルト、胃のレントゲン撮影では1回に3.0ミリシーベルトの放射線を受けるなど、私たちはいろいろな放射線の中で暮らしています。

なお、一般の人が原子力発電所から受ける放射線の限度は、年間1ミリシーベルト以下と法令で定められています。ちなみに玄海原子力発電所では放射線に対して厳重な管理をしており、年間0.001ミリシーベルト未満の実績になっています。

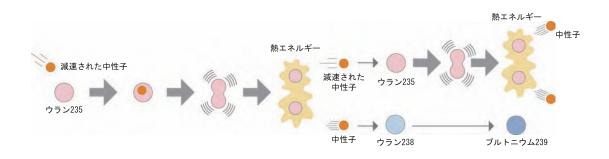
核燃料のリサイクル


4-1 核燃料サイクル

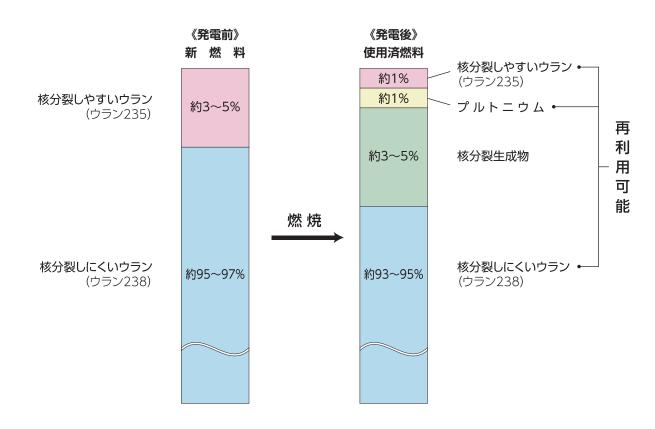
原子力発電所では、ウランが燃料として使用されますが、このウランの一部が原 子炉内で燃焼する際にプルトニウムに変わります。燃料は、3年程度使用された後、 使用済燃料として、順次、原子力発電所から再処理工場へ搬送、処理され、プルト ニウムや燃え残ったウランが回収されます。

こうして、ウランやプルトニウムといった核燃料を再利用する一連の流れを「核 燃料サイクル」といい、原子力発電の燃料をリサイクルして使うことは、エネルギー の長期的な安定供給の確保等の観点からわが国の原子力政策の基本とされてい ます。

ウランの採鉱から再利用までの核燃料サイクルの概要は、下図のとおりです。


■核燃料サイクル

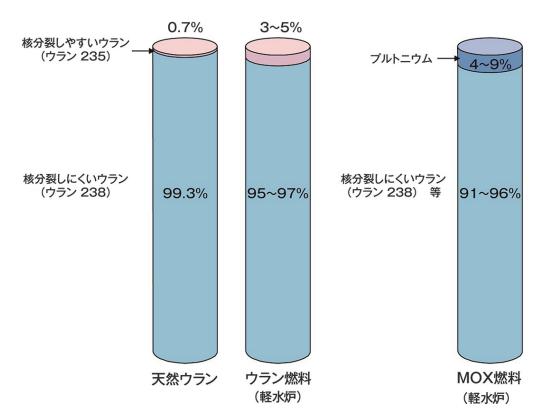
※MOX (Mixed Oxide) 燃料: プルトニウムとウランの混合燃料


参

■軽水炉の核分裂とプルトニウムの生成

(出典:「原子力・エネルギー」図面集)

■軽水炉内でのウラン燃料の燃焼による変化



4-2 プルサーマル

再処理によって回収されたプルトニウムは、ウランと混ぜ合わせた燃料(MOX 燃料)とすることにより、現在の原子力発電所で使うことができます。このように、使い終わったウラン燃料からプルトニウムを取り出して、再び現在の原子力発電所で使うことを「プルサーマル」と呼んでいます。

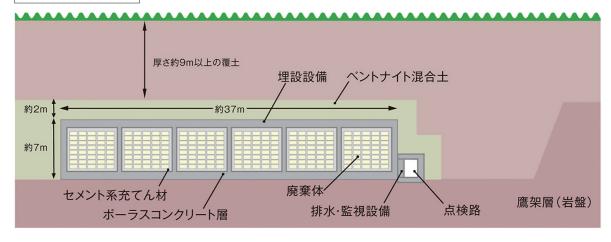
我が国では将来、核燃料サイクルを確立し、これを本格的な軌道に乗せていくため、核燃料のリサイクルに必要な技術の確立と体制・制度の整備を進めていくことにしています。また、原則として利用目的のないプルトニウムは持たないという国際的な約束を守るため、再処理で回収されたプルトニウムは、プルサーマルで計画的に利用することにしています。

■ウラン燃料とMOX燃料の組成比較

4-3 放射性廃棄物の最終処分

放射性廃棄物は、発生場所や放射能レベルに応じていくつかの区分に分類されており、その区分に応じた処分が行われます。

廃棄物の種類			廃棄物の例	発生場所	処分の方法(例)
低レベル放射性廃棄物	発電所廃棄物	放射能レベルの 極めて低い廃棄物	コンクリート、金属等	原子力発電所	トレンチ処分
		放射能レベルの 比較的低い廃棄物	廃液、フィルター、廃器材、 消耗品等を固形化		ピット処分
		放射能レベルの 比較的高い廃棄物	制御棒、炉内構造物		中深度処分
	ウラン廃棄物		消耗品、スラッジ、廃器材	ウラン濃縮・ 燃料加工施設	中深度処分、ピット処分、 トレンチ処分、 場合によっては地層処分
	超ウラン核種を含む放射性廃棄物 (TRU廃棄物)		燃料棒の部品、廃液、 フィルター	再処理施設、 MOX燃料加工施設	地層処分、中深度処分、 ピット処分
	高レベル放射性廃棄物		ガラス固化体	再処理施設	地層処分


	クリアランスレベル以下の廃棄物	原子力発電所解体廃棄物の 大部分	上に示した 全ての発生場所	再利用/一般の物品としての 処分
--	-----------------	---------------------	------------------	---------------------

(1) 低レベル放射性廃棄物

ドラム缶に詰めて密閉し、玄海原子力発電所内に保管されている低レベル放射性廃棄物 (258ページ参照) は、「放射能レベルの比較的低い廃棄物」に分類され、最終的には青森県六ヶ所村の低レベル放射性廃棄物埋設センターに搬送され埋設処分されます。

■低レベル放射性廃棄物埋設設備の断面図

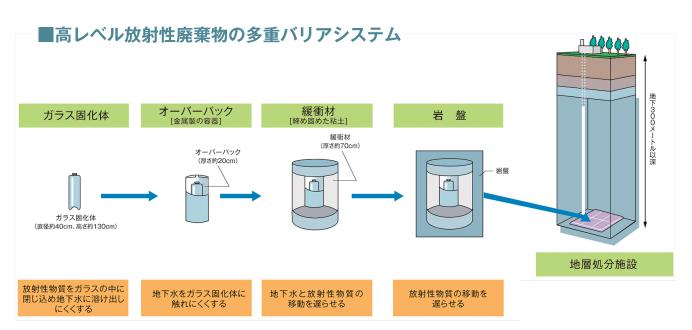
(例) 2号埋設設備

(2) 高レベル放射性廃棄物

使用済燃料を再処理してウランとプルトニウムを回収した後に、核分裂生成物を 主成分とする高い放射能を有する廃液が残ります。この廃液を化学的な変化に強い ガラスで固めたものを「高レベル放射性廃棄物(ガラス固化体)」と呼んでいます。

我が国では、高レベル放射性廃棄物を30~50年程度一時貯蔵して冷却した後は、 最終的に地下300mより深い安定した地層中に処分することを基本方針としてい ます。

これを「地層処分」と言い、深い地層が本来持つ、酸素が少なく化学的に変質しにくい、人間の生活環境から遠く離れている、などの性質を利用し、人間の生活環境に影響を及ぼさないように長期にわたって安全・確実に隔離し、閉じ込めるための方法です。


高レベル放射性廃棄物の最終処分は、原子力発電及び核燃料サイクルを進めていくために必要な最重要課題の一つであり、早期実現が求められています。

※最終処分に係る国等の動き

- ・2000年6月 『特定放射性廃棄物の最終処分に関する法律』施行
- ・2015年5月 『特定放射性廃棄物の最終処分に関する基本方針』を改定し、

国が前面に立って取り組むこととされた。

- ・2017年7月 最終処分に係る『科学的特性マップ』を公表
- ・2020年11月 北海道内2自治体でNUMOによる文献調査が開始された。
- ・2023年4月 『特定放射性廃棄物の最終処分に関する基本方針』を改定し、 国が一丸となって、かつ、国の責任で取り組んでいくこととされた。
- ・2024年6月 玄海町でNUMOによる文献調査が開始された。
- ・2024年11月 NUMOが北海道内2自治体での文献調査の報告書を公表した。

国際原子力事象評価尺度 (INES)

我が国では、原子力発電所で事故などが発生すると、地震の震度と同じように、それぞれどのくらいのレベルであるかを、0から7までのランクに分けて公表しており、これは、国際原子力事象評価尺度(INES)と呼ばれる国際的な基準に基づいています。

المال		参考事例			
V 170	基準1:人と環境	基準2:施設における放射線バリアと管理	基準3:深層防護	(INESの公式評価でないものも) 含まれている	
7 (深刻な事故)	・広範囲の健康および環境への影響を伴う放射性 物質の大規模な放出			・旧ソ連チェルノブイリ発電所事故 (1986年) 暫定評価 ・東北地方太平洋沖地震による福島第一原子力 発電所事故 (2011年)	
6 (大事故)	・放射性物質の相当量の放出				
5 (広範囲な影響を伴う事故)	・放射性物質の限定的な放出 ・放射線による数名の死亡	・炉心の重大な損傷 ・公衆が著しい被ばくを受ける可能性の高い施設内の放射性物質の大量放出		・アメリカスリーマイルアイランド発電所事故 (1979年)	
4 (局所的な影響を伴う事故)	・軽微な放射線物質の放出 ・放射線による少なくとも1名の死亡	・炉心の全放射能量の0.1%を超える放出につながる燃料の溶融または燃料の損傷 ・公衆が著しい大規模被ばくを受ける可能性の高い相当量の放射性物質の放出		・ジェー・シー・オー臨界事故 (1999年)	
3 (重大な異常事象)	・法令による年間限度の10倍を超える作業者の被ばく ・放射線による非致命的な確定的健康影響	・運転区域内での1Sv*(シーベルト)/特を超える被ばく線量率 ・公衆が著しい被ばくを受ける可能性は低いが 設計で予想していない区域での重大な汚染	・安全設備が残されていない原子力発 電所における事故寸前の状態 ・高放射能密封線源の紛失または盗難		
2 (異常事象)	・10mSv(ミリシーベルト)を超える公衆の被ばく ・法令による年間限度を超える作業者の被ばく	・50mSv(ミリシーベルト)/時を超える運転区 区域での放射線レベル ・設計で予想していない施設内の域内の相当量 の汚染	・実際の影響を伴わない安全設備の重 大な欠陥	- 美浜発電所2号機 蒸気発生器伝熱管損傷事故(1991年) - 大洗研究開発センター燃料研究棟作業員被ばく 事故(2017年)	
1 (逸脱)			・法令による関度を超えた公衆の過大被 ばく ・低放射能の線源の紛失または盗難	・「もんじゅ」ナトリウム漏えい事故(1995年) ・教質発電所2号機1次冷却材漏れ(1999年) ・浜岡原子力発電所1号機余熱除去系配管破断 事故(2001年) ・美浜発電所3号機二次系配管破損事故(2004年)	
0 (尺度未満)	安全上重要ではない事象		0+ 安全に影響を与える事象 0- 安全に影響を与えない事象		
評価対象外	安全に関係しない事象				
	(深刻な事故) 6 (大事故) 5 (広範囲な影響を伴う事故) 4 (局所的な影響を伴う事故) 3 (重大な異常事象) 2 (異常事象) 1 (逸脱)	基準1:人と環境	基準1:人と環境 基準2:施設における放射線パリアと管理	基準1:人と環境 基準2:法設度 基準2:法設度 基準2:法設度 基準3:深層防護 基準3:深層防護 日本	

※シーベルト(Sv):放射線が人体に与える影響を表す単位(1ミリシーベルトは1シーベルトの1000分の1)