佐賀県研究成果情報 (作成 2024 年 2 月)

[情報名] 基肥量がイチゴ「佐賀 i9 号」の生育、収量および品質に及ぼす影響

[要約] 慣行よりも基肥量を少なくすると第1次腋果房の出蕾日、開花日がやや早くなる。 また、花数や果数は少なくなるが、規格外果実の発生が少なく4月末までの商品果収 量は施肥量による差はみられない。このため、基肥量の減肥が可能である。

[キーワード] イチゴ、「佐賀 i9 号」、基肥、収量、生育、果実品質

[担当] 佐賀県農業試験研究センター・野菜・花き部・野菜研究担当

[連絡先] 0952-45-2143 · nougyoushikensenta@pref. saga. lg. jp

[分類] 技術者参考

[部会名] 野菜

[専門] 栽培

[背景・ねらい]

イチゴ「佐賀 i9 号」は、第 1 次腋果房の分化遅延や厳寒期の着果負担による草勢低下、 品質低下が問題となっている。先行研究では、定植後の初期の肥効が第 1 次腋果房の分化 に影響するとされている。また、近年は肥料の高騰により経費の増加も問題となっている。 そこで、基肥量の低減が生育、収量及び品質に及ぼす影響を明らかにする。

[成果の内容]

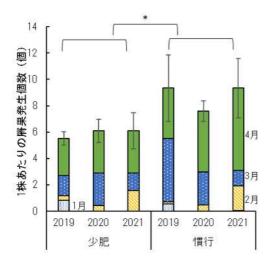
- 1. 第1次腋果房の出蕾日、開花日は、慣行よりも基肥量を少なくするとやや早くなる(表1)。
- 2. 第1次腋果房の花数は、基肥量が少ないと有意に減少する(表1)。
- 3. 規格外果実を含めた1株あたりの総果数は、基肥量が少ないとやや少なくなるが、商品果個数は同等であり、4月末までの商品果収量に差はみられない(表2)。
- 4.8 g未満の屑果の発生個数は、基肥量が少ないと有意に少なくなる(図1)。

[成果の活用面・留意点]

- 1. 2019年6月30日、2020年7月1日、2021年7月3日に鉢受けした苗を用いた。周年 ビニル展張ハウス内での隔離槽栽培とし、毎年度未使用の培土を使用した。
- 2. 基肥量は、株あたり窒素成分 $0.84\,\mathrm{g}$ (少肥: 10a あたり 6,000 株試算で窒素成分 $5\,\mathrm{kg}$)、 $1.68\,\mathrm{g}$ (慣行: 10a あたり 6,000 株試算で窒素成分 $10\,\mathrm{kg}$) を比較した。
- 3. 基肥にエコロング 413 40 日タイプを使用し、10 月中旬に追肥としてエコロング 413 140 日タイプを株あたり窒素成分 1.68 g、11 月中旬から液肥を株あたり窒素成分 0.33g 施用した場合の結果である。
- 4. 基肥量、基肥資材の種類を検討する際の参考として活用できるが、最適な施肥量は明らかとなっていないため、技術者参考とする。
- 5. 土壌の残肥、定植後の高温による肥料溶出の早進化、多かん水による流亡等により肥効が異なるため、土壌 EC や葉柄中の硝酸イオン濃度を測定し、場合によっては第1次
 腋果房分化後の追肥や液肥の施用量で調整する。
- 6. 極端に減肥した場合急激な草勢低下が懸念されるため、段階的に取り組む。

[具体的なデータ]

表 1 基肥量の違いが各果房の生育に及ぼす影響(2019~2021)


年次	試験区	頂果房				果房間	第1次腋果房			
		出蕾	開花	収穫	花数	葉数	出蕾	開花	収穫	花数
2019	少肥	10/21	11/1	12/4	24. 2	6. 1	1/1	1/14	2/23	22. 2
	慣行	10/18	10/30	11/30	24. 4	5.6	12/30	1/14	2/21	25. 3
2020	少肥	10/24	11/8	12/14	19. 9	5.4	12/19	1/4	2/13	20. 9
	慣行	10/23	11/7	12/13	20.6	6. 1	12/27	1/12	2/17	23. 9
2021	少肥	10/22	11/6	12/18	27. 8	6.4	1/2	1/16	2/26	23. 3
	慣行	10/20	11/4	12/17	31.1	7.0	1/8	1/24	3/6	31.8
平均值	少肥	10/22	11/5	12/16	24. 0	6.0	12/28	1/12	2/20	22. 0
	慣行	10/20	11/3	12/15	25. 4	6.3	1/1	1/17	2/25	27. 0
	有意差	N.S.	N.S.	N.S.	N.S.	N.S.	†	†	N.S.	*

注 1) 年次と試験区を因子とした二元配置分散分析により、*、 †はそれぞれ 5%、10%で有意差あり 年次の分析結果は記載を省略

表 2 基肥量の違いが収量性に及ぼす影響(2019~2021)

年次	試験区	総果数(果/株)	商品果数	商品果率	商品果収量 (g/株)		平均一果重 - (g/果)
		(*/*/*/	(*/*/*/	(707	年内	~4月末	(6/ 🖈 /
2019	少肥	62.5	53.4	85. 4	183.8	904. 2	16.9
	慣行	68.9	56. 1	81.8	209.3	919.3	16.4
2020	少肥	58. 2	48.9	84. 1	145. 9	894. 0	18. 2
	慣行	61.0	50.0	82.0	148.0	873.7	17. 5
2021	少肥	63.3	52.5	83. 2	70. 2	932. 1	17. 7
	慣行	71.0	56.5	79.9	63.4	963. 9	17. 1
平均値	少肥	61.3	51.6	84. 2	133.6	908.3	17.6
	慣行	67.0	54. 2	81.2	139.7	918.3	17.0
	有意差	†	N. S.	_	N.S.	N.S.	N. S.

注 1) 年次と試験区を因子とした二元配置分散分析により、†は10%で有意差あり 年次の分析結果は記載を省略

図 1 基肥量の違いが屑果の発生に及ぼす影響 (2019~2021)

- 注1) 屑果は8g未満の果実とした.
- 注2)年次と試験区を因子とした二元配置分散分析により、*は5%で有意差あり
- 注3) バーは標準誤差を示す
- 注4)調査期間は11月~4月

[その他]

研究課題名:いちご新品種の高収量・高品質生産技術の確立

予算区分: 県単(再配当) **研究期間**: 2019~2021 年度

研究担当者:光武美和、石橋璃可子、西美友紀、米倉翔太、伊藤優佑、田村直樹、田川愛